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ABSTRACT

When describing active-set methods for linearly constrained optimization, it is often con-
venient to treat all constraints in a uniform manner. However, in many problems the linear con-
straints include simple bounds on the variables as well as general constraints. Special treatment
of bound constraints in the implementation of an active-set method yields significant advantages
in computational effort and storage requirements. In this paper, we describe how to perform the
constraint-related steps of an active-set method when the constraint matrix is dense and bounds
are treated separately. These steps involve updates to the TQ factorisation of the working set of
constraints and the Cholesky factorization of the projected Hlessian (or Hessian approximation).
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1. Introduction

1. Introduction

Constrained optimization problems often include a set of linear inequality constraints, which may
be written in several different forms. We consider the following three:

LCI Ax > b;

LC2 AX = b, I < z < U;

LC3 t<' )z<u.

For convenience we shall always assume that A is a matrix with m rows and n columns. The
dimensions or other quantities follow in each case. The constraints involving A are called general
constraints, and inequalities of the form t < __ u are called simple bounds or just bounds.
If necessary, sonic of the components of I or u may be taken as -co or oo. (Note that general
equality constraints may be represented in LCI by extending the relations to include equality,
and in LC3 by specifying the same value for the corresponding elements of t and u.)

The forms IC1 - LC3 are equivalent, in the sense that any set of linear inequality constraints
may be expressed in each of the forms, given suitable definition or A, b, t, u and x. The primary
feature of interest ini LC2 is that general inequality constraints are converted to general equality
constraints by adding slack variables.

The most popular methods for treating linear inequality constraints are called active-set
methods (see Section 2). An essential characteristic of these methods is that they maintain a
prediction of the set of constraints that are active at the solution (this prediction will be called
the working set). The working set is updated by adding and deleting constraints a4 the iterations
proceed. In presenting the formal description of an active-set method, it is often convenient
to treat all inequality constraintis uniformly, since the strategies that determine changes in the
working set are usually unaffected by whether or not a constraint is a general constraint or a
simple bound.

In any implementation of an active-set method, changes in the working set involve updates
to a certain matrix C associated with the working set (and often to other matrices as well). The
data structures chosen for an implementation will inevitably be more ellicient for one constraint
form than another. If the implementation is based on form LCI, changes in the working set lead
to changes in the rows of C, while with form LC2, changes in the working set lead to changes in
the columns of C. With form LC3, the changes involve both the rows and the columns of C.

Corresponding changes must also be made to some ractorixatio, of C. For reasons of
simplicity, past implementors have dealt almost exclusively with forms LCI and ,(C2. Some
examples in the literature follow.

LCI, dense A: Rosen (1960) and many others for nonlinear programs (see Gill and Murray, 1974,
for further references); Stoer (1971) for constrained linear least squares.

I 1, sparse A: Buckley (1975) for nonlinear programs.
I,02, dense A: Miflin (1979) for constrained linear least squares; Bartels (1980) for linear pro-

grams.
1C2, sparse A: Commercial mathematical programming systems for linear and integer programs;

Murtagh and Saunders (1978, 1982) for nonlinear programs.
The disadvantage of implementations based on LCI or LC2 arises when the "natural" state-

nient of the constraints corresponds most closely to LC3 (i.e., when there is a significant number
of bounds in LCI or general inequalities in 1,C2). In such cases, a large proportion of the rows or

! [.



2 Optimization with a Mixture ofi Bounds and General Constraints

columns of C will be those of the identity matrix:

( ) 1 or C=(ci 0
C, C2 (C2I

respectively. Maintaining a factorization of the whole of C therefore involves more than the ideal
amount of storage and work. (Certain economies do arise automatically if C is treated as a sparse
matrix, but much of the objection remains.)

Implementations based on LC3 effectively take advantage of the above structure in C. Few
authors have previously considered the associated complications. Zoutendijk (1970) and Powell
(1975) have considered how changes in the working set may be performed when C is square (with
varying dimension) and its inverse is updated in product form. Gill and Murray (1973) discussed
the nature of the updates required in a non-simplex linear programming method based on an
orthogonal factorization of C.

In this paper we discuss the implementation of an active-set method suited to constraints of
the formi 1X3, with A treated as a dense matrix. We describe how to update the TQ factors of
the matrix C and the Cholesky factors of the accompanying projected Ifessian (or approximate
hlssian). The procedures have been implemented in computer software for linear and quadratic
programs and for linearly constrained optimization, as described in Gill et al. (1982a,b). The
principal advantages in dealing with W, 3 are as follows.

1. The matrix to be factorized has dimension mL X nF,,, where mL < min{m,n} and nR < n.

Further, m, and n,. are often much smaller than these bounds.
2. When finite differences are used td approximate derivatives, special treatment of bounds may

lead to significant economies in function evaluations.
3. Certain methods for semi-definite and indefinite quadratic programming may construct a

bemporary set of simple bounds in order to begin optimization. For such methods, the ability
to handle bounds efficiently is crucial even if the original problem does not contain bounds.

The first advantage is best illustrated by the case of linear programming. Standard implemen-
tations of the primal simplex method (I)antzig, 1963) apply to constraints in the form Lc2. These
arc most efficient when m < n, since the matrix to be factorized is always m X m. If most of the n
variables in iC2 are slack variables, the standard device for avoiding gross inefficiency is to solve
the dual problem. In contrast, if the form IC3 is assumed when implementing tie simplex method
(the most famous of all activc-set methods!), then maximumrn efficiency is obtained regardless of
the ratio of m to n. This advantage is all the more important for nonlinear problents, where the
device of solving the dual is not necessarily applicable or efficient.

The techniques given here may be applied to active-set methods for general optimization
problems, whenever linear and nonlinear constraints are treated separately - particularly in*
methods that solve a sequence of quadratic programming subproblems (e.g., Murray, 1969; Biggs,
1972; Ilan, 1976; Powell, 1977; Murray and Wright, 1982) or linearly constrained subproblems
(e.g., Rosen and Kreuser, 1972; Robinson, 1972; Murtagh and Saunders, 1982).

2. Overview of an active-set method

Apart from the requirement of feasibility, the optimality conditions for a constrained problem
involve only the constraints that are active (hold with equality) at the solution. Active-set methods
are based on an attempt to identify the constraints. that are active at the solution, and to treat
these as equality constraints in the subproblems that define the iterates. The temporary equalities
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are used to reduce the dimensionality of the minimization. In a typical active-set method, the
direction of search is computed by solving a (usually simplified) subproblem in which a subset of
the problem constrints are treated as equalities. The subset of the problem constraints used to
compute the search direction will be called the working set.

Before giving a detailed description of the special treatment of bounds, we consider some of
the main steps in an active-set method. Our concern is with the k-th iteration, and the associated
iterate x,. We denote by Ck the matrix whose rows are the constraints in the current working
set, by th the number of constraints in the working set (the number of rows of Ck), and by gh the
gradient of the function to be minimized, evaluated at zk. The matrix Z is defined as a matrix
whose columns span the null space of Ck (i.e., CkZk = 0); this paper is primarily concerned with
active-set methods in which Zk is stored explicitly.

The major operations associated with the current working set are:

(i) formation or the projected gradient Z~gA;
(ii) solution of the linear system ZhZuAZ =- (It)

for the (n - tk)-dimensional vector ps;
(iii) calculation of the search direction Pk = ZAPI;
(iv) calculation of a Lagrange multiplier estimate Xk by solving

min tICT~ - VkIll (2)
X

for some vector vk.
(These quantities may be computed in other mathematically equivalent forms; see Cill, Murray
and Wright (1981) for a discussion of alternatives.)

The matrix Ilk in (1) usually represents second-derivative information about the objective
function, but is not necessarily stored explicitly. For example, Ik may be the exact Hessian of
the objective function in a quadratic program, or a factorized representation of the ilessian in a
linear least-squares problem. In some methods, Hk will be a quasi-Newton approximation of the
lessian matrix, or ZXIlkZk itself will be approximated. For simplicity, we shall always refer to
lk as the "lhessian", and to ZTIkZA as t.he "projected Hessian".

3. Representation of the working set and associated factorizations

Our concern in this section is with the factorizations used in an active-set algorithm, and the
effect of the separate treatment of bounds. We shall assume that rank (Ck) = tk, i.e. that the
rows of C are linearly independent. (In practice, this condition can be enforced by suitable
choice of the working set; see Gill et al., 1982a.) For simplicity of notation, we temporarily drop
the subscript k associated with the current iteration.

At a typical iteration, the working et of t constraints will include a mixture of general
constraints and Imunds. If the working set contains any simple bounds, those variables will be
fixed on the corresponding bounds during the given iteration; all other variables will be regarded
as free. We use the suffices "Px" and "Fit" to denote items associated with the two types of
variable. Suppose that C contains n,, bounds and mL general constraints (so that t = nx +ML).
Let A denote the matrix whose rows are the mL general constraints in the working set, and let
n,, denote the number of free variables (n,, = n - nrx). If bounds are not treated separately,
n, 1 0, nR, = n, and m& = t.
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In the implementation of an active-set method, the indices of the free variables and of
the general constraints in the working set may be stored in lists (and relevant vectors ordered
accordingly). Hence, we shall assume without loss of generality that the last nr variables are
fixed. The matrix of constraints in the working set can then be written as

= A , A rx '(3)

where A,. 0 is an mL x nFR matrix, and Ix denotes an nx-dimensional identity matrix.
The first matrix that must be available in order to perform the calculations (i) through (iv)

is the matrix Z, whose columns form a basis for the set of vectors orthogonal to the rows of C.
The special form of (3) means that Z also has a special form, which involves only the columns of
A corre-sponding to free variables. Let n, denote n - t, the number of columns of Z. An n X n'
matrix Z whose columns are orthogonal to the rows of C in (3) is given by

0(, (4)

where Z,1. is an nr. X n. matrix whose columns rorm a basis for the subspace of A.,, (i.e.,
A,.Z,,, = 0). (If mL is zero, Z,,, is the n,.n-dimensional identity matrix.)

We shall obtain the matrix Zrn in (I) from a variant of the usual orthogonal factorization
which we shall call the TQ factorization. (The reasons for using the TQ factorization will be
discusscd in Section 5.3, when we consider procedures for updating the matrix factorizations
following a constraint leletion.) The TQ factorization of A,. is defined by

A,.QQ=(O T), (5)

where Q is an nrit X nv.t orthonormal matrix, and T is an mL X mL "reverse" triangular matrix
such that T, = 0 for i + j < mL,. We illustrate the form of T with a 4 X 4 example:

(Clearly, T is simply a lower-triangular matrix with its columns in reverse order.) From (5) it
follows that the first n, columns of Q can be taken as the columns of the matrix Z,.. We denote
the remaining columns of Q by Y,. (the columns of Y,. form an orthogonal basis for the subepace
of vectors spanned by the rows of A,.).

The TQ factorization for the full matsrix C (3) has the form

(Q 0 0( o') (ooR YrR 00 Ixo ' A,,, o 0 0 rr H A,x) (6)

We emphasize that the usefulness of the TQ factorization does not depend on separate
treatment of bounds, since the TQ factorization of the full matrix C may also be computed
and updated using the procedures to be described in an implementation based on the form LCI.



5. Implementation and storage

4. Calculation of the search direction and Lagrange multipliers

The calculations in Section 2 simplify when the working set and its factorization have the special
forms (3), (4) and (6). From (4) it follows that the search direction has the form p = (P~r 0)T
Further, ZTg = ZT gn and ZTIIZ = ZT,.HtlZ,.R Consequently, the computation of Pr.
involves three steps: forming the vector Z,,g,5 ; solving the linear system

ZT ,,.Z,.P.j = Z gr5  (7)

for the vector A,; and forming the vector PF = ZFr.P. (In certain contexts, such as quadratic
programming and linear least-squares, the known form of the objective function allows substantial
savings in solving (7).) The work involved is reduced as nx increases; therefore, if the working set
contains any bound constraints, less work is required if bound constraints are treated separately.

In the active-set algorithms of interest, the matrix in (7) is assumed to be positive definite,
and thus (7) is solved using the Cholesky factorization of ZT l,.Z" (see, e.g., Wilkinson, 1965;
Stewart, 1973):

Z,'RIIFR ZFR = RTR, (8)

where R is upper triangular.
Simplifications also arise in solving equation (2) for the Lagrange multiplier estimates. Let X

be partitioned into an mo-vector XL (the multiplier estimates corresponding to the general linear
constraints) and an n,.-vector XF. (the multiplier estimates corresponding to the active bound
constraints). From (6), the equations defining the nmultipliers are

0T~ , ATX~X )% AT ,.
CTXAT T XF )- r.' (9)

where : means "equal in the least-squares sense".
The vector XL is the least-squares solution of the first nF, equations of (9) (which are

compatible if ZT v,, = 0):
A TAFR>L 'VP"R'

It follows from (6) that XL may be obtained by forming yT V", and solving the mt X mL non-
singular reverse-triangular system

TrX,, = YT'Fr.

The multiplier estimates associated with the bound constraints may then be computed directly
by substituting in the remaining equations of (9), i.e.

Xrx = Vrx - AT>X L.

Note that if inL is zero, X,. is given simply by vx.
The number of multiplications required to solve (9) in the manner given above is nm, to

form Y vr,, , and ATX),, and _rn2 to solve the reverse-triangular system. The saving in workrXi 22

compared to treating all constraints uniformly is 1nFx + nvx(n + in,,) multiplications.

5. Implementation and storage

When implementing an active-set method based on the TQ and Cholesky factorizations, the
matrices to be stored include, from (6) and (8), the n,. X n,, matrix Q, the rnL-dimensional
reverse triangular matrix T, and the nz,-dimensional upper triangular matrix R. The matrix Q
is conceptually partitioned into two submatrices Z,., the first n. columns, and Y, the last
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ML columns, i.e.
Q = (Z,, Y11).

Changes in the working set will cause changes in these four matrices. From (6) we see that any
transformations applied to the columns of Y,,, will also be applied to the columns of T; from
(8) it follows that any transformations applied to the columns of Z,. will also be applied to the
columns of R. (The matrix R may also be changed in other ways - for example, by a low-rank
modification in a quasi-Newton method. However, we consider only the effect of changes in the
working set.)

In the implementation, the n75 X n,, matrix Q is stored explicitly, in the upper left corner
of sufficiently large array ZY (in a general problem, n,,, may be as large as n). The dimensions
of R and T are complementary (in the sense that n, + m, = nR), and hence both matrices
are stored in the upper left corner of a single array RT. The matrix R is stored in the first n,
columns (corresponding to the columns of Z,,), and the matrix T in the following m, columns
(corresponding to the columns of YR). With this storage arrangement, rotations applied to
columns of ZY can be applied to exactly the same columns of RT. We have chosen to store the
triangular matrices R and T as two-dimensional arrays (rather than in a "packed" form), so that
separate subroutines are not required to'apply linear algebraic operations to triangular matrices.
(In our implementation we use a set of linear algebra subroutines similar to the BLAS (Lawson
et al., 1979) to perform these operations.)

The following diagram illustrates the parallel storage arrangements in ZY and RT for the case
n, = 5 and m, = 3. The elements of Z,,, YR, R and T are denoted by z, y, r, and t,
respectively.

ns ML nrX

z z z y y y

Z 2 1 y y y

2 z : X a y y y
S z z y y y
22232z y y yZ 2 2 .2 z y y y

ZY =
z z 2 z 2 y y y12111 y y y

r r r r r t
r r r r t t

r r r t t t

RT- r r
r

6. Changes In the working set
Unless the correct active set is known a priori, the working set must be modified during the
execution of an active-set method, by adding and deleting constraints. Because of the simple
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nature of these changes, it is possible to update the necessary matrix factorizatioin to correspond
with the new working set. In the remainder of this section, we consider how to update the TQ
factorization (6) and the Cholesky factorization (8) following .L single change in the working wet.
If everal constraints are to be added or deleted, the procedures are repeated as necessary.

The discussion or updates will assume a general familiarity with the properties of plane
rotations. Sequences of plane rotations are used to introduce zeros into appropriate positions of
a vector or matrix, and have exceptional properties of numerical stability (see, e.g., Wilkinson,
1965, pp. 47-48).

We shall illustrate each modification process using sequences of simple diagrams, following
the conventions of Cox (1981) to show the effects of the plane rotations. Each diagram depicts
the changes resulting from one plane rotation. The following symbols are used:

x denotes a non-zero element that is not altered;
m denotes a non-zero element that is modified;
f denotes a previously zero element that is filled in;
0 denotes a previously non-zero element that is annihilated; and

(or blank) denotes a zero element that is unaltered.

In the algebraic representation of the updates, barred quantities will represent the "new" values.

6.1. Adding a general constraint. When a general constraint is added to the working set, its
index can simply be placed at the end of the list of indices of general constraints in the working
set. Therefore, without loss of generality we shall assume that the new constraint is added as
the last row of A. The row dimension of AR and the dimension of T will thus increase by one,
and the column dimension of Z,,, will decrease by one. (Note that the column dimension of A,.
is unchanged.) Let ar denote the new row of A, partitioned into (a,.T a T ). Let w7 denote the
vector aPRQ, and partition w as (w. WY), so that w. consists of the first nz components of w1 .
From (5), it follows that

4,RQ=(AR )Q 0 T0T
aFR )Q (aY

We see that a new matrix Q can be obtained by applying a sequence of plane rotations on the right
of Q to transform the vector wT to suitable form; the transformed matrix Q then becomes . The
sequence of rotations take linear combinations of the elements of wr to reduce it to a multiple
(say, -y) of 4, where e, denotes the nz-th coordinate vector. The rotations are constructed to
alter pairs of components in the order (1, 2), (2,3), ... , (n, - 1, n.), as indicated in the following
diagrams, which depict the vector wTu as it is reduced to "yef:

( x xx x x) - (0 m x x) . 0 ( -O x .(. • 0m- ) .- (. • • 0 m).

The effect of these transformations can be expressed algebraically as

AFR(P~)=~ 3  =( 0 T )= 0 T).0 1 (0 0 ) c0W
By construction, the rotations in P affect only the first n, columns of Q, so that the last m,
columns of are identical to those of Q, and the first n, columns of Q are linear combinations
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of the first n, columns of Q. Hence,

z.p=(Z,, y),

where V, the transformed last column of Z,., becomes the first column of YFR.

Tle plane rotations applied to Z, also transform the Cholesky factor R of the projected
Hessian. The chosen order of the rotations in P means that each successive rotation has the
effect of introducing a subdiagonal element into the upper-triangular matrix R, as shown in the
following sequence of diagrams. For clarity, we again show the vector w3 at the top as it is
reduced to (0 .y)T; the matrices underneath represent the transformed version of R.

xx x xx Omx xx •Omx x ••Omx •Om

x x xxx mm xx x x mmx x x xmmx x x xmm
x xx tmx x xmmxx x xmmx X X XMI

xxx xxx rmxx x mmx x xmm
x x xx x x inX xmm

x x X x f m

Since the last column of the matrix Z,P is not part of ZFR, the last column of lP can be
discarded. The remaining matrix is then restored to upper-triangular form by a forward sweep
of row rotations (say, the matrix P), which is applied on the left to eliminate the subdiagonal
elements, as shown in the followirg diagrams.

x x x x mmm n xx x x x X x x xx x x

xx x x 0 mmm m m m x x x x xx

xxx - S x x -. 0 M n -. mm n xx

x x x x x x 0 m Im
x x X x 0

Let R denote the matrix lIP with its last column deleted; then we have

P k '0

where R- is upper-triangular. Note Lhat the rotations in P affect R?, but not a or T.
The number of multiplications associated with adding a general constraint includes the

following (where only the highest-order tern is given): n2,, to form a7, Q; 3n- for the two sweeps
or rotations applied to I; and 3n,.Rn to transform the appropriate columns of Q. (We assume
the three-multiplication form of a plane rotation; see Gill et al., 1974.)

6.2. Adding a bound. When a bound constraint is dlded to the working set, a previously
free variable becomes fixed on its bound. Thus, the column dimension or A,., the column and
row dimensions of Z,, and the dimension of Q are decreased by one. The dimension of T is
unaltered.

We assume that the new fixed variable corresponds to the last (nK.-th) column of A,,; in
practice, the index of the variable at the end of the list of free variables is moved to the position
of the newly fixed variable. Let eTa denote the nr,-th coordinate vector. Addition of the nr,-th
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variable to the working set causes the vector eTa to be added as the first row of C, i.e.

.), (10)
C

and, in effect, moves the last column of APR into A,.. Let wT denote the nR-th row of Q, and
note that w has unit Euclidean length. As in Section 6.1, let wT be partitioned as (wT wT).
After adding the bound to the working set, it follows from (3) and (10) that

0( H, 0 1". 0 0 1. .
0 T A,

In order to compute the updated TQ factorization, the first row of the matrix on the right-

hand side of (I I) must be reduced to the n, 5 -th coordinate vector. This is achieved by a forward
sweep of plane rotations (say, I) that alter columns 1 through n.,,, in the order (1,2),
(nn - 1, n,,), such that the nR,-tli row and column of Q are transformed to the n,. 5 -th coordinate
vector. The effect of the rotations in P on the matrix Q can e represented as

QP=(Z,. Y. . P =Q~ 0 FR 0

The effect of the rotations in P on R and T is best understood by considering them in two
groups. Firstly, the rotations that alter columns I through n, of Q affect the columns of R
exactly as described in Section 6.1, and a set of row rotations are then applied to restore the
upper-triangular form of ft. Secondly, the rotations that alter columns n. through nF( if Q
cause elements to be added above the reverse diagonal of T, as shown in the following diagrams.
The vector at the top shows the order or the rotations, with 7' below.

xxxxx 0mxxx 0mxx 0 mx . . . 0m

x x x x r m
x x -- x x -+ x x --. m x "- xm m

x x x x x x rmxx x Mmx x x mm

x x x x f M X X X x mm x x x x mmx xx x rmM

The first m,, columns of the transformed T become 7', and the remaining column becomes
the column or A corresponding to the new fixed variable.

Let I+x denote the (n~x + I)-dimensional identity matrix. The final configuration is thus0( 00)+
h,0 1oX PO x o11 10 o T A ,

as desired.
The number of multiplications associated with adding a bound constraint includes all those

needed to add a general constraint, with an additional jm2 to modify T.
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6.3. Deleting a general constraint. When a general constraint (say, the i-th) is deleted from
the working set, the row. dimension of A,, and the dimension of T are decreased by one, and the
column dimension of Z,, is increased by one. (As in Section 6.1, the column dimension of A,.
is not altered.) From (5), we have

A.Q =(0 S),
where S is an (m, - 1) X m, matrix such that rows 1 through i - I are in reverse triangular
form, and the remaining rows have one extra element above the reverse diagonal. In order to
reduce the last m,, - 1 columns of S to the desiredl reverse triangular form of T, a backward
sweep of plane rotations (say, P) is applied on the right, to take linear combinations of columns
(mL - i + 1, mL - i), ... , (2, 1). The effect of these rotations is shown in the following diagrams
for the case mL 6 and i = 3:

X X X X

xx x x x x X X
x x xx - 0 Mx x -- X X X X X X

x x x x x x m mx x 0 m x xx x x x x
xx x x x x x m x x mmx x. 0 m x x x x

This transformation may be expressed as

oARQ(' ) )= A 5 Qo 0

The first n, columns of Q are not affected by the rotations in P, and hence the first n, columns
of Z,. are identical to the columns of ZF.. The matrix ZR is given by

FR (Z,. ), (12)

where the new (last) column z of 9F. is a linear combination of the relevant columns of Ya.
(Wben i = mL, no reduction at all is needed, and z is just the first column of Y..)

Because of the form (12), the new projected Hessian matrix 21'Tt, i is given by

-TI ",o = T (RTR v)

F ew VT (R3)
where-R4 vRT = (T R11 Tv) 3)

where v = ZFinz and 0 - zTI!__,z (Note that H=, R.) In cases when HR or RTR is
a quasi-Newton approximation, the new row and column of (13) may need to be approximated.

Let r denote the solution of RTr = v; if ZT H1 grn is positive definite, the quanlity 0- rr
must be positive. In this case, only one further step or the row-wise Cholesky factorization is
needed to compute the new Cholesky factor R, which is given by

0p

where p2 = 0- rTr. If the matrix tRT H Z g, is not positive definite, the Cholesky factorisation
may be undefined or ill-conditioned, and other techniques should be used to modify the factoriza-
tion without excessive additional computation or loss of numerical stability (e.g., see Gill eta.,
1982a, for techniques applicable to quadratic programming).

,]I



6. Changes in the working set 11

The number of multiplications associated with deleting the i-th general constraint includes
the following (where only the highest-order term is given): I(m,-i)2 to operate on T; 3nr(rn-i)
to transform Q; n2. to form lrnz; nritns to form R H, , z; and n to compute the additional
row of the Cholesky factor. It is clearly advantageous to delete constraints at the end of the list
of general constraints in the working set; hence, the indices of general equality constraints are
always placed at the beginning of the list.

The justification for using the TQ factorization arises from this part of an active-set method.

From a theoretical viewpoint, ZR would remain an orthogonal basis for the null space of A,
regardless of the position in which the new column appeared. However, in order to update the
Cholesky factors efficiently, the new column must appear after the columns of Zr. (otherwise,
(13) would not hold). The TQ factorization has an implementation advantage because the new
column of Z,,H automatically appears in the correct position after deletion of a constraint from
the working set. With other alternatives, the housekeeping associated with the update of R is
more complicated. For example, in an implementation based on the LQ factorization, the new
column might be moved to the end of ZFR, or a list could be maintained of the locations or the
columns of ZR; another alternative is to store the columns of Z, in reverse order (see Cill and
Murray, 1977).

6.4. Deleting a bound. When a bound constraint is deleted from the working set, a previously
fixed variable becomes free. In this case, the column dimension of A,R, the column and row
dimensions of ZR and the dimension of Q are increased by one; the dimension of 7' remains
unaltered. In practice, the index of the newly freed variable is added at the end of the list of

free variables. Hence, we assume without loss of generality that the (n.n + l)-th variable is to be
freed from its bound, so that G is defined by deleting row nR + I of C. In effect, the bounlary
between A,,, and A,. is "shifted" by one column; this. corresponds to augmenting Q by a row
and column of the identity, and reducing by one the dimension of the identity matrix associated
with the fixed variables.

Let a denote the column of A corresponding to the newly freed variable, and let 1-x denote
the (n,,x - 1)-dimensional identity matrix. The result of deleting the bound constraint is then

0 01 Q 0 0 0 o ,-,

0 0 -0~( lrc \A,3 GaF~X 0 01,) (0 T a Ar,.)

To reduce the augmented matrix (T a) to the desired form (0 T), a backward sweep or
column plane rotations (say, P) is applied in the order (mL + 1,mL),..., (2, 1), as shown in the.
following diagrams:

X X 0 M x x

x x x x m m 0 mx x x x x

x x x x x x m m x m m x 0 m x x X x x

x x x x x x x mM x x m i x x m m x x 0 m x x x

The rotations in P affect columns n, + 1 through n,3 + 1 of the augmented Q. The first n,
columns of Z,. are thus simply those of Z,., with a row of zeros added at the bottom. It follows
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that 2,, is given by

= ( ,, (14)
0

where the last element of z will be nonzero.
The effect of freeing the (nr.R + l)-th variable is to augment HF, by the row and column

corresponding to the newly released variable. Since (14) is similar to (12), the Cholcsky factors of
the new projected Ilessian can be obtained from the existing factors by performing one further step
of the factorization as before (assuming that the updated projected Hessian is positive definite).

The number of multiplications associated with deleting a bound constraint includes the
following, where only the highest-order term is given: lmi to operate on T; 3mLn,, to transform
Q; n2., to form 1IIz; n,.n to form ZTr IRz; and 1n' to update R.
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